Yeast topoisomerase II is inhibited by etoposide after hydrolyzing the first ATP and before releasing the second ADP.

نویسندگان

  • S K Morris
  • J E Lindsley
چکیده

Topoisomerase II-catalyzed DNA transport requires coordination between two distinct reactions: ATP hydrolysis and DNA cleavage/religation. To further understand how these reactions are coupled, inhibition by the clinically used anticancer drug etoposide was studied. The IC(50) for perturbing the DNA cleavage/religation equilibrium is nucleotide-dependent; its value is 6 microM in the presence of ATP, 25 microM in the presence of a nonhydrolyzable ATP analog, and 45 microM in the presence of ADP or no nucleotide. This inhibition was further characterized using steady-state and pre-steady-state ATPase and decatenation assays. Etoposide is a hyperbolic noncompetitive inhibitor of the ATPase activity with a K(i)(app) of 5.6 microM no inhibition of ATP hydrolysis is seen in the absence of DNA cleavage. In order to determine which steps of the ATPase mechanism etoposide inhibits, pre-steady-state analysis was performed. These results showed that etoposide does not reduce the rate of binding two ATP, hydrolyzing the first ATP, or releasing the second ADP. Inhibition is therefore associated with the first product release step or hydrolysis of the second ATP, suggesting that DNA religation normally occurs at one of these two steps. Multiple turnover decatenation is inhibited when etoposide is present; however, single turnover decatenation occurs normally. The implications of these results are discussed in terms of their contribution to our current model for the topoisomerase II mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP.

In the preceding paper, we showed that DNA topoisomerase II from Saccharomyces cerevisiae binds two ATP and rapidly hydrolyzes at least one of them before encountering a slow step in the reaction mechanism. These data are potentially consistent with two different types of reaction pathways: (1) sequential ATP hydrolysis or (2) simultaneous hydrolysis of both ATP. Here, we present results that a...

متن کامل

Salvicine functions as novel topoisomerase II poison by binding to ATP pocket.

Salvicine, a structurally modified diterpenoid quinone derived from Salvia prionitis, is a nonintercalative topoisomerase II (topo II) poison. The compound possesses potent in vitro and in vivo antitumor activity with a broad spectrum of anti-multidrug resistance activity and is currently in phase II clinical trials. To elucidate the distinct antitumor properties of salvicine and obtain valuabl...

متن کامل

ATP modulates poly(ADP-ribose) polymerase-1-facilitated topoisomerase I-linked DNA religation in the presence of camptothecin.

Poly(ADP-ribose) polymerase (PARP)-1 was reported to promote the religation activity of topoisomerase I in the presence of camptothecin by itself through the direct interaction with topoisomerase I or by the formation of poly(ADP-ribosyl)ated topoisomerase I. We have demonstrated previously that ATP inhibited PARP-1/NAD-facilitated religation of topoisomerase I-linked DNA (TLD) in the presence ...

متن کامل

Human Small Cell Lung Cancer NYH Cells Selected for Resistance to the Bisdioxopiperazine Topoisomerase II Catalytic Inhibitor ICRF-187 Demonstrate a Functional R162Q Mutation in the Walker A Consensus ATP Binding Domain of the a Isoform

Bisdioxopiperazine drugs such as ICRF-187 are catalytic inhibitors of DNA topoisomerase II, with at least two effects on the enzyme: namely, locking it in a closed-clamp form and inhibiting its ATPase activity. This is in contrast to topoisomerase II poisons as etoposide and amsacrine (m-AMSA), which act by stabilizing enzyme-DNA-drug complexes at a stage in which the DNA gate strand is cleaved...

متن کامل

Mitindomide is a catalytic inhibitor of DNA topoisomerase II that acts at the bisdioxopiperazine binding site.

The antitumor drug mitindomide (NSC 284356) was shown to inhibit the decatenation activity of human and Chinese hamster ovary (CHO) topoisomerase II [DNA topoisomerase (ATP-hydrolyzing), EC 5.99.1.1]. Mitindomide did not induce the formation of topoisomerase II-DNA covalent cleavable complexes in CHO cells. These results taken together indicate that mitindomide is a catalytic/noncleavable compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 43  شماره 

صفحات  -

تاریخ انتشار 1999